Diversification in the Neotropics: mitochondrial and nuclear phylogeography of the iguana Ctenosaura pectinata, and related species

Eugenia Zarza, Victor H. Reynoso, Brent C. Emerson

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)


While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.
Original languageEnglish
Pages (from-to)3259-3275
Number of pages17
JournalMolecular Ecology
Issue number14
Publication statusPublished - 2008

Cite this