TY - GEN
T1 - Downlink transmission of distributed antenna systems in high building environments
AU - Osman, Hassan
AU - Zhu, Huiling
AU - Alade, Temitope
AU - Wang, Jiangzhou
PY - 2011
Y1 - 2011
N2 - Over the last few years high data rate wireless transmission has gained considerable attention in hot spot areas, including high buildings. It has been demonstrated that distributed antenna systems (DASs) improve the performance of the indoor environment by covering dead spots. In this paper, the DAS is investigated in high building to provide high data rates for indoor wireless mobile communications by exploiting spatial diversity and reducing radio transmission distance. In the proposed indoor DAS, several neighbouring floors compose a floor-bank and are controlled by one central unit (CU). The spectrum is not reused in a floor-bank, but can be reused among different floor-banks, which causes co-channel interference. In order to analyse the performance of the indoor DAS in high building with the presence of co-channel interference, an accurate propagation model of the interference from other floor is a key requirement. Direct propagation inside the building and reflection from nearby buildings have been considered in the channel model. Based on the theoretical analysis, the impact of several system parameters on the performance is presented in terms of BER. Numerical results indicate that the position of the user in the floor has significant effect on the system performance and the attenuation introduced by the floor separation in high buildings should be taken into consideration during the planning of the number of floor in each floor-bank.
AB - Over the last few years high data rate wireless transmission has gained considerable attention in hot spot areas, including high buildings. It has been demonstrated that distributed antenna systems (DASs) improve the performance of the indoor environment by covering dead spots. In this paper, the DAS is investigated in high building to provide high data rates for indoor wireless mobile communications by exploiting spatial diversity and reducing radio transmission distance. In the proposed indoor DAS, several neighbouring floors compose a floor-bank and are controlled by one central unit (CU). The spectrum is not reused in a floor-bank, but can be reused among different floor-banks, which causes co-channel interference. In order to analyse the performance of the indoor DAS in high building with the presence of co-channel interference, an accurate propagation model of the interference from other floor is a key requirement. Direct propagation inside the building and reflection from nearby buildings have been considered in the channel model. Based on the theoretical analysis, the impact of several system parameters on the performance is presented in terms of BER. Numerical results indicate that the position of the user in the floor has significant effect on the system performance and the attenuation introduced by the floor separation in high buildings should be taken into consideration during the planning of the number of floor in each floor-bank.
KW - co-channel interference
KW - DAS
KW - frequency reuse factor
KW - Indoor wireless communication
UR - http://www.scopus.com/inward/record.url?scp=80052154521&partnerID=8YFLogxK
U2 - 10.1109/icc.2011.5962496
DO - 10.1109/icc.2011.5962496
M3 - Conference contribution
AN - SCOPUS:80052154521
SN - 9781612842332
T3 - IEEE International Conference on Communications
BT - 2011 IEEE International Conference on Communications, ICC 2011
T2 - 2011 IEEE International Conference on Communications, ICC 2011
Y2 - 5 June 2011 through 9 June 2011
ER -