TY - JOUR
T1 - Editorial: Seismicity in Volcanic Areas
AU - Keir, Derek
AU - De Siena, Luca
AU - Doubre, Cécile
AU - Johnson, Jessica H.
AU - Maccaferri, Francesco
AU - Passarelli, Luigi
PY - 2021/12/24
Y1 - 2021/12/24
N2 - Seismic activity (e.g., earthquakes, tremors) beneath volcanic areas is primarily caused by the dynamic interaction of molten rock and hydrothermal fluids with the solid host rock, by fracturing and fragmentation of the magma itself, and by tectonic processes interacting with the volcano. In addition, near-surface phenomena such as explosions and rockfalls at a volcanic edifice also produce seismic events. At volcano observatories globally, the real-time monitoring of the spatial and temporal patterns of seismic events is an essential geophysical tool to quantify the state of unrest, and forecast eruptions successfully. Seismic waveforms, earthquake catalogues and earthquake ray-path properties commonly supplement this tool to model the complex processes responsible for the earthquakes quantitatively, and to image subsurface magmatic and tectonic structures. Independent constraints provided by other disciplines such as geodesy and structural geology also significantly help scientists to understand the volcanic processes. Recent advances in earthquake recording technology, computing power and algorithms in artificial intelligence, allow processing and interpretation of large and complex multi-parametric datasets and scenarios.
AB - Seismic activity (e.g., earthquakes, tremors) beneath volcanic areas is primarily caused by the dynamic interaction of molten rock and hydrothermal fluids with the solid host rock, by fracturing and fragmentation of the magma itself, and by tectonic processes interacting with the volcano. In addition, near-surface phenomena such as explosions and rockfalls at a volcanic edifice also produce seismic events. At volcano observatories globally, the real-time monitoring of the spatial and temporal patterns of seismic events is an essential geophysical tool to quantify the state of unrest, and forecast eruptions successfully. Seismic waveforms, earthquake catalogues and earthquake ray-path properties commonly supplement this tool to model the complex processes responsible for the earthquakes quantitatively, and to image subsurface magmatic and tectonic structures. Independent constraints provided by other disciplines such as geodesy and structural geology also significantly help scientists to understand the volcanic processes. Recent advances in earthquake recording technology, computing power and algorithms in artificial intelligence, allow processing and interpretation of large and complex multi-parametric datasets and scenarios.
U2 - 10.3389/feart.2021.829460
DO - 10.3389/feart.2021.829460
M3 - Editorial
VL - 9
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
SN - 2296-6463
M1 - 829460
ER -