Effect of irradiance on the emission of short-lived halocarbons from three common tropical marine microalgae

Yong Kian Lim, Fiona Seh Lin Keng, Siew Moi Phang, William T. Sturges, Gill Malin, Noorsaadah Abd Rahman

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
11 Downloads (Pure)


Marine algae have been reported as important sources of biogenic volatile halocarbons that are emitted into the atmosphere. These compounds are linked to destruction of the ozone layer, thus contributing to climate change. There may be mutual interactions between the halocarbon emission and the environment. In this study, the effect of irradiance on the emission of halocarbons from selected microalgae was investigated. Using controlled laboratory experiments, three tropical marine microalgae cultures, Synechococcus sp. UMACC 371 (cyanophyte), Parachlorella sp. UMACC 245 (chlorophyte) and Amphora sp. UMACC 370 (diatom) were exposed to irradiance of 0, 40 and 120 µmol photons m−2s−1. Stress in the microalgal cultures was indicated by the photosynthetic performance (Fv/Fm, maximum quantum yield). An increase in halocarbon emissions was observed at 120 µmol photons m−2s−1, together with a decrease in Fv/Fm. This was most evident in the release of CH3I by Amphora sp. Synechococcus sp. was observed to be the most affected by irradiance as shown by the increase in emissions of most halocarbons except for CHBr3 and CHBr2Cl. High positive correlation between Fv/Fm and halocarbon emission rates was observed in Synechococcus sp. for CH2Br2. No clear trends in correlation could be observed for the other halocarbons in the other two microalgal species. This suggests that other mechanisms like mitochondria respiration may contribute to halocarbon production, in addition to photosynthetic performance.

Original languageEnglish
Article numbere6758
Issue number4
Publication statusPublished - 19 Apr 2019


  • Environmental change
  • Halocarbon emission
  • Irradiance
  • Marine microalgae
  • Tropics

Cite this