Abstract
Bumblebees (Bombus spp.) are important pollinators of both crops and wild flowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumblebees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources.
We used field surveys, molecular genetics and fine resolution remote sensing to estimate the locations of wild bumblebee nests and to infer foraging distances across a 20 km2 agricultural landscape in southern England. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level.
Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (551 m, 536 m, 501 m, respectively) than B. hortorum and B. pascuorum (336 m, 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants.
Our findings suggest that favourable landscape composition and configuration has the potential to minimise foraging distances across a range of bumblebee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumblebees and enhancing crop pollination services.
We used field surveys, molecular genetics and fine resolution remote sensing to estimate the locations of wild bumblebee nests and to infer foraging distances across a 20 km2 agricultural landscape in southern England. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level.
Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (551 m, 536 m, 501 m, respectively) than B. hortorum and B. pascuorum (336 m, 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants.
Our findings suggest that favourable landscape composition and configuration has the potential to minimise foraging distances across a range of bumblebee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumblebees and enhancing crop pollination services.
Original language | English |
---|---|
Pages (from-to) | 726-739 |
Number of pages | 14 |
Journal | Ecological Applications |
Volume | 26 |
Issue number | 3 |
Early online date | 19 Aug 2015 |
DOIs | |
Publication status | Published - Apr 2016 |
Profiles
-
Andrew Bourke
- School of Biological Sciences - Emeritus Professor
- Centre for Ecology, Evolution and Conservation - Member
Person: Honorary, Research Centre Member