Abstract
Mika et al. [1] introduce a non-linear formulation of the Fisher discriminant based the well-known "kernel trick", later shown to be equivalent to the Least-Squares Support Vector Machine [2, 3]. In this paper, we show that the cross-validation error can be computed very efficiently for this class of kernel machine, specifically that leave-one-out cross-validation can be performed with a computational complexity of only O(l3) operations (the same as that of the basic training algorithm), rather than the O(l4) of a direct implementation. This makes leave-one-out cross-validation a practical proposition for model selection in much larger scale applications of KFD classifiers.
Original language | English |
---|---|
Pages | 241-246 |
Number of pages | 6 |
Publication status | Published - Apr 2003 |
Event | European Symposium on Artificial Neural Networks - Bruges, Belgium Duration: 23 Apr 2003 → 25 Apr 2003 |
Conference
Conference | European Symposium on Artificial Neural Networks |
---|---|
Abbreviated title | ESANN-2003 |
Country/Territory | Belgium |
City | Bruges |
Period | 23/04/03 → 25/04/03 |