Electric field measurements reveal the pivotal role of cofactor-substrate interaction in dihydrofolate reductase catalysis

Aduragbemi S. Adesina, Katarzyna Świderek, Louis Y. P. Luk, Vicent Moliner, Rudolf K. Allemann

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
7 Downloads (Pure)


The contribution of ligand-ligand electrostatic interaction to transition state formation during enzyme catalysis has remained unexplored, even though electrostatic forces are known to play a major role in protein functions and have been investigated by the vibrational Stark effect (VSE). To monitor electrostatic changes along important steps during catalysis, we used a nitrile probe (T46C-CN) inserted proximal to the reaction center of three dihydrofolate reductases (DHFRs) with different biophysical properties, Escherichia coli DHFR (EcDHFR), its conformationally impaired variant (EcDHFR-S148P), and Geobacillus stearothermophilus DHFR (BsDHFR). Our combined experimental and computational approach revealed that the electric field projected by the substrate toward the probe negates those exerted by the cofactor when both are bound within the enzymes. This indicates that compared to previous models that focus exclusively on subdomain reorganization and protein-ligand contacts, ligand-ligand interactions are the key driving force to generate electrostatic environments conducive for catalysis.

Original languageEnglish
Pages (from-to)7907-7914
Number of pages8
JournalACS Catalysis
Issue number14
Early online date19 Jun 2020
Publication statusPublished - 17 Jul 2020


  • electrostatics
  • dihydrofolate reductase
  • vibrational Stark effects
  • protein dynamics
  • electric fields

Cite this