Electron transfer and half-reactivity in nitrogenase

Tom Clarke, Shirley Fairhurst, David J. Lowe, Nick Watmough, Robert R. Eady

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Nitrogenase is a globally important enzyme that catalyses the reduction of atmospheric dinitrogen into ammonia and is thus an important part of the nitrogen cycle. The nitrogenase enzyme is composed of a catalytic molybdenum–iron protein (MoFe protein) and a protein containing an [Fe4–S4] cluster (Fe protein) that functions as a dedicated ATP-dependent reductase. The current understanding of electron transfer between these two proteins is based on stopped-flow spectrophotometry, which has allowed the rates of complex formation and electron transfer to be accurately determined. Surprisingly, a total of four Fe protein molecules are required to saturate one MoFe protein molecule, despite there being only two well-characterized Fe-protein-binding sites. This has led to the conclusion that the purified Fe protein is only half-active with respect to electron transfer to the MoFe protein. Studies on the electron transfer between both proteins using rapid-quench EPR confirmed that, during pre-steady-state electron transfer, the Fe protein only becomes half-oxidized. However, stopped-flow spectrophotometry on MoFe protein that had only one active site occupied was saturated by approximately three Fe protein equivalents. These results imply that the Fe protein has a second interaction during the initial stages of mixing that is not involved in electron transfer.
Original languageEnglish
Pages (from-to)201-206
Number of pages6
JournalBiochemical Society Transactions
Volume39
Issue number1
DOIs
Publication statusPublished - 2011

Cite this