Electron transport at the microbe-mineral interface: A synthesis of current research challenges

David J. Richardson, James K. Fredrickson, John M. Zachara

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at the microbe–mineral interface from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.

Original languageEnglish
Pages (from-to)1163-1166
Number of pages4
JournalBiochemical Society Transactions
Issue number6
Publication statusPublished - Dec 2012


  • Bacterium
  • Electron transfer
  • Metal
  • Microbe-mineral interface
  • Respiration

Cite this