Projects per year
Abstract
Protonation at metal–metal bonds is of fundamental interest in the context of the function of the active sites of hydrogenases and nitrogenases. In diiron dithiolate complexes bearing carbonyl and electron-donating ligands, the metal–metal bond is the highest occupied molecular orbital (HOMO) with a “bent” geometry. Here we show that the experimentally measured rates of protonation (kH) of this bond and the energy of the HOMO as measured by the oxidation potential of the complexes (E1/2ox) correlate in a linear free energy relationship: ln kH = ((F(c – βE1/2ox))/(RT)), where c is a constant and β is the dimensionless Brønsted coefficient. The value of β of 0.68 is indicative of a strong dependence upon energy of the HOMO: measured rates of protonation vary over 6 orders of magnitude for a change in E1/2ox of ca. 0.55 V (ca. 11 orders of magnitude/V). This relationship allows prediction of protonation rates of systems that are either too fast to measure experimentally or that possess additional protonation sites. It is further suggested that the nature of the bridgehead in the dithiolate ligand can exert a stereoelectronic influence: bulky substituents destabilize the HOMO, thereby increasing the rate of protonation.
Original language | English |
---|---|
Pages (from-to) | 13038-13044 |
Number of pages | 7 |
Journal | Journal of the American Chemical Society |
Volume | 136 |
Issue number | 37 |
Early online date | 2 Sep 2014 |
DOIs | |
Publication status | Published - 17 Sep 2014 |
Profiles
-
Joseph Wright
- School of Chemistry, Pharmacy and Pharmacology - Senior Lecturer in Energy Materials
- Chemistry of Light and Energy - Member
- Chemistry of Materials and Catalysis - Member
- Energy Materials Laboratory - Member
Person: Research Group Member, Academic, Teaching & Research
Projects
- 1 Finished
-
Iron-only hydrogenases: a functional artificial H-cluster
Biotechnology and Biological Sciences Research Council
1/10/07 → 30/09/10
Project: Research