Electronic spectra of positively charged carbon clusters - C2n+ (n=6-14)

Jack T. Buntine, Mariah I. Cotter, Ugo Jacovella, Chang Liu, Patrick Watkins, Eduardo Carrascosa, James N. Bull, Luke Weston, Giel Muller, Michael S. Scholz, Evan J. Bieske

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
8 Downloads (Pure)


Electronic spectra are measured for mass-selected C+2𝑛(𝑛 = 6–14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C+2𝑛(𝑛 = 6–14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C+22 and larger clusters. The C+2𝑛 electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C+12, C+16, C+20, C+24, and C+28 are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C+14, C+18, C+22, and C+26 are narrower, consistent with slower non-radiative deactivation.
Original languageEnglish
Article number214302
JournalThe Journal of Chemical Physics
Issue number21
Early online date8 Nov 2021
Publication statusPublished - 7 Dec 2021

Cite this