Abstract
Electronic spectra are measured for mass-selected C+2𝑛(𝑛 = 6–14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C+2𝑛(𝑛 = 6–14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C+22 and larger clusters. The C+2𝑛 electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C+12, C+16, C+20, C+24, and C+28 are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C+14, C+18, C+22, and C+26 are narrower, consistent with slower non-radiative deactivation.
Original language | English |
---|---|
Article number | 214302 |
Journal | The Journal of Chemical Physics |
Volume | 155 |
Issue number | 21 |
Early online date | 8 Nov 2021 |
DOIs | |
Publication status | Published - 7 Dec 2021 |