Projects per year
Abstract
Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
Original language | English |
---|---|
Article number | 409 |
Journal | Microorganisms |
Volume | 7 |
Issue number | 10 |
DOIs | |
Publication status | Published - 29 Sep 2019 |
Profiles
-
David Lea-Smith
- School of Biological Sciences - Associate Professor in Microbiology
- Molecular Microbiology - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Academic, Teaching & Research
Projects
- 1 Finished