TY - JOUR
T1 - Enantioselective synthesis and application to the allylic imidate rearrangement of amine-coordinated palladacycle catalysts of cobalt sandwich complexes
AU - Cassar, Doyle J.
AU - Ilyashenko, Gennadiy
AU - Ismail, Muhammad
AU - Woods, James
AU - Hughes, David L.
AU - Richards, Christopher J.
PY - 2013/12/23
Y1 - 2013/12/23
N2 - The reaction of (η5-(N,N-dimethylaminomethyl)cyclopentadien-yl)(η4-tetraphenylcyclobutadiene)cobalt with sodium tetrachloropalladate and (R)-N-acetylphenylalanine gave planar chiral palladacycle di-μ-chloridebis[(η5-(Sp)-2-(N,N-dimethylaminomethyl)cyclopentadienyl,1-C,3′-N)(η4-tetraphenylcyclobutadiene)cobalt]dipalladium [(Sp)-Me2-CAP-Cl] in 92 % ee and 64 % yield. Enantiopurity (>98 % ee) was achieved by purification of the monomeric (R)-proline adducts and conversion back to the chloride dimer. Treatment with AgOAc gave (Sp)-Me2-CAP-OAc which was applied to asymmetric transcyclopalladation (up to 78 % ee). The (R)-N-acetylphenylalanine mediated palladation methodology was applicable also to the corresponding N,N-diethyl (82 % ee, 39 % yield) and pyrrolidinyl (>98 % ee, 43 % yield) cobalt sandwich complexes. A combination of 5 mol % of the latter [(Sp)-Pyrr-CAP-Cl] and AgNO3 (3.8 equiv) is a catalyst for the allylic imidate rearrangement of an (E)-N-aryltrifluoroacetimidate (up to 83 % ee), and this catalyst system is also applicable to the rearrangement of a range of (E)-trichloroacetimidates (up to 99 % ee). This asymmetric efficiency combined with the simplicity of catalyst synthesis provides accessible solutions to the generation of non-racemic allylic amine derivatives.
AB - The reaction of (η5-(N,N-dimethylaminomethyl)cyclopentadien-yl)(η4-tetraphenylcyclobutadiene)cobalt with sodium tetrachloropalladate and (R)-N-acetylphenylalanine gave planar chiral palladacycle di-μ-chloridebis[(η5-(Sp)-2-(N,N-dimethylaminomethyl)cyclopentadienyl,1-C,3′-N)(η4-tetraphenylcyclobutadiene)cobalt]dipalladium [(Sp)-Me2-CAP-Cl] in 92 % ee and 64 % yield. Enantiopurity (>98 % ee) was achieved by purification of the monomeric (R)-proline adducts and conversion back to the chloride dimer. Treatment with AgOAc gave (Sp)-Me2-CAP-OAc which was applied to asymmetric transcyclopalladation (up to 78 % ee). The (R)-N-acetylphenylalanine mediated palladation methodology was applicable also to the corresponding N,N-diethyl (82 % ee, 39 % yield) and pyrrolidinyl (>98 % ee, 43 % yield) cobalt sandwich complexes. A combination of 5 mol % of the latter [(Sp)-Pyrr-CAP-Cl] and AgNO3 (3.8 equiv) is a catalyst for the allylic imidate rearrangement of an (E)-N-aryltrifluoroacetimidate (up to 83 % ee), and this catalyst system is also applicable to the rearrangement of a range of (E)-trichloroacetimidates (up to 99 % ee). This asymmetric efficiency combined with the simplicity of catalyst synthesis provides accessible solutions to the generation of non-racemic allylic amine derivatives.
KW - asymmetric synthesis
KW - catalysis
KW - metallacycles
KW - palladium
KW - sandwich complexes
U2 - 10.1002/chem.201302922
DO - 10.1002/chem.201302922
M3 - Article
VL - 19
SP - 17951
EP - 17962
JO - Chemistry-A European Journal
JF - Chemistry-A European Journal
SN - 0947-6539
IS - 52
ER -