Energy flux and dissipation of inhomogeneous plane waves in hereditary viscoelasticity

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
10 Downloads (Pure)


Inhomogeneous small-amplitude plane waves of (complex) frequency ω are propagated through a linear dissipative material which displays hereditary viscoelasticity. The energy density, energy flux and dissipation are quadratic in the small quantities, namely, the displacement gradient, velocity and velocity gradient, each harmonic with frequency ω, and so give rise to attenuated constant terms as well as to inhomogeneous plane waves of frequency 2ω. The quadratic terms are usually removed by time averaging but we retain them here as they are of comparable magnitude with the time-averaged quantities of frequency ω. A new relationship is derived in hereditary viscoelasticity that connects the amplitudes of the terms of the energy density, energy flux and dissipation that have frequency 2ω. It is shown that the complex group velocity is related to the amplitudes of the terms with frequency 2ω rather than to the attenuated constant terms as it is for homogeneous waves in conservative materials.
Original languageEnglish
Article number20190478
JournalProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Issue number2231
Publication statusPublished - 6 Nov 2019

Cite this