Episodic-like memory in wild free-living blue tits and great tits

James R. Davies, Lasse S. Keuneke, Nicola S. Clayton, Gabrielle L. Davidson

Research output: Contribution to journalArticlepeer-review

Abstract

Episodic-like memory in non-human animals represents the behavioral characteristics of human episodic memory—the ability to mentally travel backward in time to “re-live” past experiences. A focus on traditional model species of episodic-like memory may overlook taxa possessing this cognitive ability and consequently its evolution across species. Experiments conducted in the wild have the potential to broaden the scope of episodic-like memory research under the natural conditions in which they evolved. We combine two distinct yet complementary episodic-like memory tasks (the what-where-when memory and incidental encoding paradigms), each targeting a different aspect of human episodic memory, namely the content (what-where-when) and process (incidental encoding), to comprehensively test the memory abilities of wild, free-living, non-caching blue tits (Cyanistes caeruleus) and great tits (Parus major). Automated feeders with custom-built programs allowed for experimental manipulation of spatiotemporal experiences on an individual-level basis. In the what-where-when memory experiment, after learning individualized temporal feeder rules, the birds demonstrated their ability to recall the “what” (food type), “where” (feeder location), and “when” (time since their initial visit of the day) of previous foraging experiences. In the incidental encoding experiment, the birds showed that they were able to encode and recall incidental spatial information regarding previous foraging experiences (“where” test), and juveniles, but not adults, were also able to recall incidentally encoded visual information (“which” test). Consequently, this study presents multiple lines of converging evidence for episodic-like memory in a wild population of generalist foragers, suggesting that episodic-like memory may be more taxonomically widespread than previously assumed.
Original languageEnglish
JournalCurrent Biology
Early online date3 Jul 2024
DOIs
Publication statusE-pub ahead of print - 3 Jul 2024

Cite this