Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor

Lei Li, Kwan San Hui, Kwun Nam Hui, Qixun Xia, Jianjian Fu, Young-Rae Cho

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)
14 Downloads (Pure)


Layered double hydroxide (LDH) is a promising electrode material for supercapacitor owing to its versatility in compositions, high theoretical capacitance, environmental benignity, and low cost. However, capacity fading of LDH hinders its application in energy storage. Herein, we develop a facile approach to synthesize NiAl-LDH nanoplates possessing high electrochemical activity and desirable morphology to improve ion diffusion kinetics and reduce charge transfer resistance, leading to enhanced specific capacitance compared to pristine NiAl-LDH. Scanning electron microscopy shows that the LDH nanoplates are as thin as ∼30 nm with a mean lateral dimension of ∼150 nm. The NiAl-LDH nanoplates electrode delivers remarkably high specific capacitance of 1713.2 F g−1 at 1 A g−1 and good cycling ability of 88% capacitance retention over 5000 cycles compared to only 757.1 F g−1 at 1 A g−1 and 76.4% of the pristine NiAl-LDH. An asymmetric supercapacitor (ASC) is assembled using NiAl-LDH nanoplates and graphene as positive and negative electrodes, respectively. The ASC operating at 1.4 V delivers a high specific capacitance of 125 F g−1 at 1 A g−1 with a high energy density of 34.1 Wh kg−1 at a power density of 700 W kg−1 and outstanding cyclic stability (91.8% capacitance retention after 5000 cycles).
Original languageEnglish
Pages (from-to)803–812
JournalJournal of Alloys and Compounds
Early online date7 Jun 2017
Publication statusPublished - 15 Oct 2017


  • Layered double hydroxide
  • Nanoplates
  • Ultrathin
  • Graphene
  • Asymmetric supercapacitor

Cite this