TY - JOUR
T1 - Factors affecting fisher decisions: The case of the inshore fishery for European sea bass (Dicentrarchus labrax)
AU - Watson, Joseph W.
AU - Muench, Angela
AU - Hyder, Kieran
AU - Sibly, Richard
PY - 2022/3/31
Y1 - 2022/3/31
N2 - Fishery management relies on forecasts of fish abundance over time and space, on scales of months and kilometres. While much research has focussed on the drivers of fish populations, there has been less investigation of the decisions made day-to-day by fishers and their subsequent impact on fishing pressure. Studies that focus on the fisher decisions of smaller vessels may be particularly important due to the prevalence of smaller vessels in many fisheries and their potential vulnerability to bad weather and economic change. Here we outline a methodology with which to identify the factors affecting fisher decisions and success as well as quantifying their effects. We analyse first the decision of when to leave port, and then the success of the fishing trip. Fisher behaviour is here analysed in terms of the decisions taken by fishers in response to bio-physical and socio-economic changes and to illustrate our method, we describe its application to the under 10-meter fleet targeting sea bass in the UK. We document the effects of wave height and show with increasing wave height fewer vessels left port to go fishing. The decision to leave port was only substantially affected by time of high tide at one of the four ports investigated. We measured the success of fishing trips by the landings of sea bass (kg) per metre of vessel length. Fishing success was lower when wave height was greater and when fish price had increased relative to the previous trip. Fuel price was unimportant, but a large proportion of the variation in success was explained by variation between individual vessels, presumably due to variation in skipper ability or technical restrictions due to vessel characteristics. The results are discussed in the context of management of sea bass and other small-scale inshore fisheries.
AB - Fishery management relies on forecasts of fish abundance over time and space, on scales of months and kilometres. While much research has focussed on the drivers of fish populations, there has been less investigation of the decisions made day-to-day by fishers and their subsequent impact on fishing pressure. Studies that focus on the fisher decisions of smaller vessels may be particularly important due to the prevalence of smaller vessels in many fisheries and their potential vulnerability to bad weather and economic change. Here we outline a methodology with which to identify the factors affecting fisher decisions and success as well as quantifying their effects. We analyse first the decision of when to leave port, and then the success of the fishing trip. Fisher behaviour is here analysed in terms of the decisions taken by fishers in response to bio-physical and socio-economic changes and to illustrate our method, we describe its application to the under 10-meter fleet targeting sea bass in the UK. We document the effects of wave height and show with increasing wave height fewer vessels left port to go fishing. The decision to leave port was only substantially affected by time of high tide at one of the four ports investigated. We measured the success of fishing trips by the landings of sea bass (kg) per metre of vessel length. Fishing success was lower when wave height was greater and when fish price had increased relative to the previous trip. Fuel price was unimportant, but a large proportion of the variation in success was explained by variation between individual vessels, presumably due to variation in skipper ability or technical restrictions due to vessel characteristics. The results are discussed in the context of management of sea bass and other small-scale inshore fisheries.
UR - http://www.scopus.com/inward/record.url?scp=85127388979&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0266170
DO - 10.1371/journal.pone.0266170
M3 - Article
VL - 17
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 3
M1 - e0266170
ER -