Abstract
Chromophores based on the para-hydroxycinnamate moiety are widespread in the natural world, including as the photoswitching unit in photoactive yellow protein and as a sunscreen in the leaves of plants. Here, photodetachment action spectroscopy combined with frequency- and angle-resolved photoelectron imaging is used to fingerprint the excited-state dynamics over the first three bright action-absorption bands in the methyl ester anions (pCEs-) of deprotonated para-coumaric acid at a temperature of ∼300 K. The excited states associated with the action-absorption bands are classified as resonances because they are situated in the detachment continuum and are open to autodetachment. The frequency-resolved photoelectron spectrum for pCEs- indicates that all photon energies over the S1(ππ*) band lead to similar vibrational autodetachment dynamics. The S2(nπ*) band is Herzberg-Teller active and has comparable brightness to the higher lying 21(ππ*) band. The frequency-resolved photoelectron spectrum over the S2(nπ*) band indicates more efficient internal conversion to the S1(ππ*) state for photon energies resonant with the Franck-Condon modes (∼80%) compared with the Herzberg-Teller modes (∼60%). The third action-absorption band, which corresponds to excitation of the 21(ππ*) state, shows complex and photon energy-dependent dynamics, with 20-40% of photoexcited population internally converting to the S1(ππ*) state. There is also evidence for a mode-specific competition between prompt autodetachment and internal conversion on the red edge of the 21(ππ*) band. There is no evidence for recovery of the ground electronic state and statistical electron ejection (thermionic emission) following photoexcitation over any of the three action-absorption bands. The photoelectron spectra for the deprotonated methyl ether derivative (pCEt-) at photon energies over the S1(ππ*) and S2(nπ*) bands indicate diametrically opposed dynamics compared with pCEs-, namely, intense thermionic emission due to efficient recovery of the ground electronic state.
Original language | English |
---|---|
Pages (from-to) | 2140-2151 |
Number of pages | 12 |
Journal | The Journal of Physical Chemistry A |
Volume | 124 |
Issue number | 11 |
Early online date | 27 Feb 2020 |
DOIs | |
Publication status | Published - 19 Mar 2020 |
Profiles
-
James Bull
- School of Chemistry, Pharmacy and Pharmacology - Associate Professor in Ultrafast Chemical Physics
- Centre for Photonics and Quantum Science - Member
- Chemistry of Light and Energy - Member
Person: Research Group Member, Academic, Teaching & Research