TY - JOUR
T1 - Free convection beneath a heated horizontal plate in a rapidly rotating system
AU - Whittaker, Robert J.
AU - Lister, John R.
PY - 2007
Y1 - 2007
N2 - Laminar flow beneath a finite heated horizontal plate in a rapidly rotating system is considered in both axisymmetric and planar geometries. In particular, we examine the case where the Ekman layer is confined well within a much deeper (yet still thin) thermal boundary layer. This situation corresponds to the regime E-3/2 xs226A Ra xs226A E-5/2, where E and Ra are the natural Ekman and Rayleigh numbers for the system (equation (2.6)). The outward flux of buoyant fluid from beneath the plate occurs primarily in the Ekman layer, while outward flow in the thicker thermal boundary layer is inhibited by a dominant thermal-wind balance. The O(Ra-1/2 E-3/4 thickness of the thermal boundary layer is determined by a balance between Ekman suction and diffusion. There are several possible asymptotic regimes near the outer edge of the plate, differing only by logarithmic factors, but in all cases the edge corresponds to a simple boundary condition on the interior flow. With a uniform plate temperature, the dimensionless heat transfer (equation (7.6)) is given by a Nusselt number $\Nu\,{\sim} \tfrac{1}{2}\Ra^{1/2}\Ek^{3/4}[\ln (\Ra^{-1} \Ek ^{-5/2})]^{1/2}$. The solution for a uniform plate heat flux is also presented.
AB - Laminar flow beneath a finite heated horizontal plate in a rapidly rotating system is considered in both axisymmetric and planar geometries. In particular, we examine the case where the Ekman layer is confined well within a much deeper (yet still thin) thermal boundary layer. This situation corresponds to the regime E-3/2 xs226A Ra xs226A E-5/2, where E and Ra are the natural Ekman and Rayleigh numbers for the system (equation (2.6)). The outward flux of buoyant fluid from beneath the plate occurs primarily in the Ekman layer, while outward flow in the thicker thermal boundary layer is inhibited by a dominant thermal-wind balance. The O(Ra-1/2 E-3/4 thickness of the thermal boundary layer is determined by a balance between Ekman suction and diffusion. There are several possible asymptotic regimes near the outer edge of the plate, differing only by logarithmic factors, but in all cases the edge corresponds to a simple boundary condition on the interior flow. With a uniform plate temperature, the dimensionless heat transfer (equation (7.6)) is given by a Nusselt number $\Nu\,{\sim} \tfrac{1}{2}\Ra^{1/2}\Ek^{3/4}[\ln (\Ra^{-1} \Ek ^{-5/2})]^{1/2}$. The solution for a uniform plate heat flux is also presented.
U2 - 10.1017/S0022112007007252
DO - 10.1017/S0022112007007252
M3 - Article
VL - 586
SP - 491
EP - 506
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
SN - 0022-1120
ER -