Abstract
Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11 mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzleds mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R We further show co-localisation of fzd7 with other early and late heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development.
Original language | English |
---|---|
Pages (from-to) | 1861-1868 |
Number of pages | 8 |
Journal | Biology Open |
Volume | 6 |
Issue number | 12 |
Early online date | 3 Nov 2017 |
DOIs | |
Publication status | Published - 15 Dec 2017 |
Profiles
-
Grant Wheeler
- School of Biological Sciences - Professor
- Cells and Tissues - Member
- Wheeler Group - Group Leader
Person: Group Lead, Research Group Member, Academic, Teaching & Research