TY - JOUR
T1 - Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment
AU - Durkin, Colleen A.
AU - Marchetti, Adrian
AU - Bender, Sara J.
AU - Truong, Tiffany
AU - Morales, Rhonda
AU - Mock, Thomas
AU - Armbrust, E. Virginia
PY - 2012/11
Y1 - 2012/11
N2 - A microcosm study in iron-limited waters of the northeast subarctic Pacific Ocean was conducted to examine how iron availability affects the frustule-related response of individual diatoms and thus the total quantity of silica precipitated by the community. New silica precipitated per cell was estimated using the fluorescent cell stain 2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamoyl)-methoxy]phenyl}oxazole (PDMPO). Differences in new silica precipitation within a particular genus before and after iron enrichment were small compared to differences among genera, indicating that the quantity of total silica precipitated is particularly sensitive to community composition. Transcriptional patterns of genes encoding silicon transporters, aminopropyltransferases, chitin synthases, and a protein with uncharacterized function were measured in natural populations to identify indicators of the frustule-related responses of different genera to iron limitation. Transcripts associated with silicon transporters were the most readily detectable in three metatranscriptome datasets and were capable of resolving species composition shifts and physiological responses. Silicon transporter transcripts from a distinct phylogenetic clade were most abundant in the iron-limited community, and transcripts from a separate clade were more abundant in the community that bloomed after iron enrichment. Transcripts of the gene present in the ironlimited community were also more abundant in iron-limited laboratory cultures of Pseudo-nitzschia multiseries, suggesting that this gene plays a role in silicon uptake during iron limitation. The responses of individual cells, as detected in this study, determine how the community influences silicon cycling in iron-limited environments.
AB - A microcosm study in iron-limited waters of the northeast subarctic Pacific Ocean was conducted to examine how iron availability affects the frustule-related response of individual diatoms and thus the total quantity of silica precipitated by the community. New silica precipitated per cell was estimated using the fluorescent cell stain 2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamoyl)-methoxy]phenyl}oxazole (PDMPO). Differences in new silica precipitation within a particular genus before and after iron enrichment were small compared to differences among genera, indicating that the quantity of total silica precipitated is particularly sensitive to community composition. Transcriptional patterns of genes encoding silicon transporters, aminopropyltransferases, chitin synthases, and a protein with uncharacterized function were measured in natural populations to identify indicators of the frustule-related responses of different genera to iron limitation. Transcripts associated with silicon transporters were the most readily detectable in three metatranscriptome datasets and were capable of resolving species composition shifts and physiological responses. Silicon transporter transcripts from a distinct phylogenetic clade were most abundant in the iron-limited community, and transcripts from a separate clade were more abundant in the community that bloomed after iron enrichment. Transcripts of the gene present in the ironlimited community were also more abundant in iron-limited laboratory cultures of Pseudo-nitzschia multiseries, suggesting that this gene plays a role in silicon uptake during iron limitation. The responses of individual cells, as detected in this study, determine how the community influences silicon cycling in iron-limited environments.
UR - http://www.scopus.com/inward/record.url?scp=84867240923&partnerID=8YFLogxK
U2 - 10.4319/lo.2012.57.6.1619
DO - 10.4319/lo.2012.57.6.1619
M3 - Article
AN - SCOPUS:84867240923
VL - 57
SP - 1619
EP - 1633
JO - Limnology and Oceanography
JF - Limnology and Oceanography
SN - 0024-3590
IS - 6
ER -