Galois self-dual cuspidal types and Asai local factors

U. K. Anandavardhanan, Rob Kurinczuk, Nadir Matringe, Vincent Sécherre, Shaun Stevens

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
18 Downloads (Pure)

Abstract

Let F=Fo be a quadratic extension of non-archimedean locally compact fields of odd residual characteristic and σ be its non-trivial automorphism. We show that any σ-self-dual cuspidal representation of GLn.F/ contains a σ-self-dual Bushnell-Kutzko type. Using such a type, we construct an explicit test vector for Flicker's local Asai L-function of a GLn.Fo/-distinguished cuspidal representation and compute the associated Asai root number. Finally, by using global methods, we compare this root number to Langlands-Shahidi's local Asai root number, and more generally we compare the corresponding epsilon factors for any cuspidal representation.

Original languageEnglish
Pages (from-to)3129–3191
Number of pages63
JournalJournal of the European Mathematical Society
Volume23
Issue number9
Early online date4 May 2021
DOIs
Publication statusPublished - 2021

Keywords

  • Asai local factor
  • Distinction
  • Root number
  • Test vector
  • Type theory

Cite this