Gamut constrained illuminant estimation

G. D. Finlayson, S. D. Hordley, I. Tastl

Research output: Contribution to journalArticlepeer-review

131 Citations (Scopus)


This paper presents a novel solution to the illuminant estimation problem: the problem of how, given an image of a scene taken under an unknown illuminant, we can recover an estimate of that light. The work is founded on previous gamut mapping solutions to the problem which solve for a scene illuminant by determining the set of diagonal mappings which take image data captured under an unknown light to a gamut of reference colours taken under a known light. Unfortunately, a diagonal model is not always a valid model of illumination change and so previous approaches sometimes return a null solution. In addition, previous methods are difficult to implement. We address these problems by recasting the problem as one of illuminant classification: we define a priori a set of plausible lights thus ensuring that a scene illuminant estimate will always be found. A plausible light is represented by the gamut of colours observable under it and the illuminant in an image is classified by determining the plausible light whose gamut is most consistent with the image data. We show that this step (the main computational burden of the algorithm) can be performed simply and efficiently by means of a non-negative least-squares optimisation. We report results on a large set of real images which show that it provides excellent illuminant estimation, outperforming previous algorithms.
Original languageEnglish
Pages (from-to)93-109
Number of pages17
JournalInternational Journal of Computer Vision
Issue number1
Publication statusPublished - 1 Apr 2006

Cite this