Gas chromatography/isotope-ratio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide

Thomas Röckmann, Jan Kaiser, Carl A. M. Brenninkmeijer, Willi A. Brand

Research output: Contribution to journalArticlepeer-review

88 Citations (Scopus)

Abstract

We describe an automated gas chromatography/isotope-ratio mass spectrometry (GC/IRMS) method for the determination of the 18O and position-resolved 15N content of nitrous oxide at natural isotope abundance. The position information is obtained from successive measurement of the isotopic composition of the N2O+ ion at m/z 44, 45, 46 and the NO+ fragment ion at m/z 30, 31. The fragment ion analysis is complicated by a non-linearity in the mass spectrometer that has to be taken into account. Evaluation of the absolute peak areas allows for a simultaneous determination of the N2O mixing ratio for atmospheric samples. Samples with mixing ratios ranging from a few nmol/mol up to the percent level can be analyzed using different sample inlet systems. The high concentration inlet system provides an easy and quick method to carry out various diagnostic tests, in particular to perform realistic linearity tests. A gas chromatographic set-up with a split column and a backflush possibility improves analytical precision and excludes interferences by substances with long retention times from preceding runs. We also describe a new open split interface that uses only a single transfer capillary to the mass spectrometer for sample and reference gas.
Original languageEnglish
Pages (from-to)1897-1908
Number of pages12
JournalRapid Communications in Mass Spectrometry
Volume17
Issue number16
DOIs
Publication statusPublished - 2003

Cite this