Gene deletion of 7,8-linoleate diol synthase of the rice blast fungus: Studies on pathogenicity, stereochemistry and oxygenation mechanisms

Fredrik Jernerén, Ane Sesma, Marina Francheschetti, Mats Hamberg, Ernst H. Oliw

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Linoleate diol synthases (LDS) are heme enzymes, which oxygenate 18:2n-6 sequentially to (8R)-hydroperoxylinoleic acid ((8R)-HPODE) and to (5S,8R)-dihydroxy-, (7S,8S)-dihydroxy-, or (8R,11S)-dihydroxylinoleic acids (DiHODE). The genome of the rice blast fungus, Magnaporthe oryzae, contains two genes with homology to LDS. M. oryzae oxidized 18:2n-6 to (8R)-HPODE and to (7S,8S)-DiHODE, (6S,8R)-DiHODE, and (8R,11S)-HODE. Small amounts of 10-hydroxy-(8E,12Z)-octadecadienoic acid and traces of 5,8-DiHODE were also detected by liquid chromatography-mass spectrometry. The contribution of the 7,8-LDS gene to M. oryzae pathogenicity was evaluated by replacement of the catalytic domain with hygromycin and green fluorescent protein variant (SGFP) cassettes. This genetically modified strain Δ7,8-LDS infected rice leaves and roots and formed appressoria and conidia as the native fungus. The Δ7,8-LDS mutant had lost the capacity to biosynthesize all the metabolites except small amounts of 8-hydroxylinoleic acid. Studies with stereospecifically deuterated linoleic acids showed that (8R)-HPODE was formed by abstraction of the pro-S hydrogen at C-8 and antarafacial oxygenation, whereas (7S,8S)-DiHODE and (8R,11S)-DiHODE were formed from (8R)-HPODE by suprafacial hydrogen abstraction and oxygenation at C-7 and C-11, respectively. A mac1 suppressor mutant (Δmac1 sum1–99) of M. oryzae, which shows cAMP-independent protein kinase A activity, oxygenated 18:2n-6 to increased amounts of (10R)-HPODE and (5S,8R)-DiHODE. Expression of the 7,8-LDS gene but not of the second homologue was detected in the suppressor mutant. This suggests that PKA-mediated signaling pathway regulates the dioxygenase and hydroperoxide isomerase activities of M. oryzae.
Original languageEnglish
Pages (from-to)5308-5316
Number of pages9
JournalJournal of Biological Chemistry
Volume285
Early online date20 Dec 2009
DOIs
Publication statusPublished - 19 Feb 2010

Cite this