TY - JOUR
T1 - Genetic mapping studies of familial juvenile hyperuricemic nephropathy on chromosome 16p11-p13
AU - Stacey, Joanna M.
AU - Turner, Jeremy J. O.
AU - Harding, Brian
AU - Nesbit, M. Andrew
AU - Kotanko, Peter
AU - Lhotta, Karl
AU - Puig, Juan G.
AU - Torres, Rosa J.
AU - Thakker, Rajesh V.
PY - 2003
Y1 - 2003
N2 - Familial juvenile hyperuricemic nephropathy (FJHN), which is inherited as an autosomal dominant disorder, is characterized by hyperuricemia, a low fractional renal excretion of urate, and chronic renal failure that is associated with interstitial fibrosis. Studies in 4 families (3 European and 1 Japanese) have mapped the gene causing autosomal dominant FJHN to chromosome 16p11-p13. To refine this location we have pursued linkage studies in 7 European families with autosomal dominant FJHN and used 11 chromosome 16p11-p13 polymorphic loci whose order has been established as 16pter-D16S3069-D16S3060-D16S3041-D16S3036-D16S3046-[D16S403,D16S417]-D16S420-D16S3113-D16S401-D16S3133-16cen. Cosegregation between these polymorphic loci and FJHN was observed in 5 of the families, and linkage was established between FJHN and 6 loci (peak LOD score, 5.32 with D16S417, at 0% recombination), with the most likely location of FJHN being within a 22-centimorgan interval flanked centromerically by D16S401 and telomerically by D16S3069. Furthermore, FJHN in 2 families was found not to be linked to chromosome 16p11-p13, thereby demonstrating genetic heterogeneity. Thus, 5 additional families with FJHN showing linkage to chromosome 16p11-p13 loci have been identified, and genetic heterogeneity has been demonstrated in more than 25% of FJHN families. These results will facilitate the characterization of this gene regulating urate metabolism.
AB - Familial juvenile hyperuricemic nephropathy (FJHN), which is inherited as an autosomal dominant disorder, is characterized by hyperuricemia, a low fractional renal excretion of urate, and chronic renal failure that is associated with interstitial fibrosis. Studies in 4 families (3 European and 1 Japanese) have mapped the gene causing autosomal dominant FJHN to chromosome 16p11-p13. To refine this location we have pursued linkage studies in 7 European families with autosomal dominant FJHN and used 11 chromosome 16p11-p13 polymorphic loci whose order has been established as 16pter-D16S3069-D16S3060-D16S3041-D16S3036-D16S3046-[D16S403,D16S417]-D16S420-D16S3113-D16S401-D16S3133-16cen. Cosegregation between these polymorphic loci and FJHN was observed in 5 of the families, and linkage was established between FJHN and 6 loci (peak LOD score, 5.32 with D16S417, at 0% recombination), with the most likely location of FJHN being within a 22-centimorgan interval flanked centromerically by D16S401 and telomerically by D16S3069. Furthermore, FJHN in 2 families was found not to be linked to chromosome 16p11-p13, thereby demonstrating genetic heterogeneity. Thus, 5 additional families with FJHN showing linkage to chromosome 16p11-p13 loci have been identified, and genetic heterogeneity has been demonstrated in more than 25% of FJHN families. These results will facilitate the characterization of this gene regulating urate metabolism.
U2 - 10.1210/jc.2002-021268
DO - 10.1210/jc.2002-021268
M3 - Article
VL - 88
SP - 464
EP - 470
JO - Journal of Clinical Endocrinology & Metabolism
JF - Journal of Clinical Endocrinology & Metabolism
SN - 0021-972X
IS - 1
ER -