TY - JOUR
T1 - Genetic markers in s. Paratyphi c reveal primary adaptation to pigs
AU - Nair, Satheesh
AU - Fookes, Maria
AU - Corton, Craig
AU - Thomson, Nicholas R.
AU - Wain, John
AU - Langridge, Gemma C.
PY - 2020/4/30
Y1 - 2020/4/30
N2 - Salmonella enterica with the identical antigenic formula 6,7:c:1,5 can be differentiated biochemically and by disease syndrome. One grouping, Salmonella Paratyphi C, is currently considered a typhoidal serovar, responsible for enteric fever in humans. The human-restricted typhoidal serovars (S. Typhi and Paratyphi A, B and C) typically display high levels of genome degradation and are cited as an example of convergent evolution for host adaptation in humans. However, S. Paratyphi C presents a different clinical picture to S. Typhi/Paratyphi A, in a patient group with predisposition, raising the possibility that its natural history is different, and that infection is invasive salmonellosis rather than enteric fever. Using whole genome sequencing and metabolic pathway analysis, we compared the genomes of 17 S. Paratyphi C strains to other members of the 6,7:c:1,5 group and to two typhoidal serovars: S. Typhi and Paratyphi A. The genome degradation observed in S. Paratyphi C was much lower than S. Typhi/Paratyphi A, but similar to the other 6,7:c:1,5 strains. Genomic and metabolic comparisons revealed little to no overlap between S. Paratyphi C and the other typhoidal serovars, arguing against convergent evolution and instead providing evidence of a primary adaptation to pigs in accordance with the 6,7:c:1.5 strains.
AB - Salmonella enterica with the identical antigenic formula 6,7:c:1,5 can be differentiated biochemically and by disease syndrome. One grouping, Salmonella Paratyphi C, is currently considered a typhoidal serovar, responsible for enteric fever in humans. The human-restricted typhoidal serovars (S. Typhi and Paratyphi A, B and C) typically display high levels of genome degradation and are cited as an example of convergent evolution for host adaptation in humans. However, S. Paratyphi C presents a different clinical picture to S. Typhi/Paratyphi A, in a patient group with predisposition, raising the possibility that its natural history is different, and that infection is invasive salmonellosis rather than enteric fever. Using whole genome sequencing and metabolic pathway analysis, we compared the genomes of 17 S. Paratyphi C strains to other members of the 6,7:c:1,5 group and to two typhoidal serovars: S. Typhi and Paratyphi A. The genome degradation observed in S. Paratyphi C was much lower than S. Typhi/Paratyphi A, but similar to the other 6,7:c:1,5 strains. Genomic and metabolic comparisons revealed little to no overlap between S. Paratyphi C and the other typhoidal serovars, arguing against convergent evolution and instead providing evidence of a primary adaptation to pigs in accordance with the 6,7:c:1.5 strains.
KW - Convergent evolution
KW - Genome degradation
KW - Genomic lesions
KW - Host adaptation
UR - http://www.scopus.com/inward/record.url?scp=85084208879&partnerID=8YFLogxK
U2 - 10.3390/microorganisms8050657
DO - 10.3390/microorganisms8050657
M3 - Article
AN - SCOPUS:85084208879
VL - 8
JO - Microorganisms
JF - Microorganisms
SN - 2076-2607
IS - 5
M1 - 657
ER -