TY - JOUR
T1 - Granulocyte‐macrophage colony stimulating factor induces endothelial capillary formation through induction of membrane‐type 1 matrix metalloproteinase expression in vitro
AU - Krubasik, Davia
AU - Eisenach, Patricia A.
AU - Kunz-Schughart, Leoni A.
AU - Murphy, Gillian
AU - English, William R.
PY - 2008/3/15
Y1 - 2008/3/15
N2 - In our study, we examined the mechanism by which granulocyte-macrophage colony stimulating factor (GM-CSF) regulates angiogenesis using in vitro models. GM-CSF significantly increased precapillary sprout-like formation from endothelial cell spheroids seeded in type-I collagen gels and tubule formation on coculture of endothelial cells with fibroblasts. In both cases, sprout and tubule formation was highly dependent on metalloproteinase activity. Tissue Inhibitor of metalloproteinase (TIMP) profiling in the spheroid and coculture models showed inhibition by TIMP-2 but not by TIMP-1, indicative of activity of membrane-type matrix metalloproteinases (MT-MMPs). GM-CSF induced sprout formation in spheroids was found to be potently inhibited by siRNA specific for MT1-MMP. Subsequent analysis showed that GM-CSF transiently increased MT1-MMP mRNA in endothelial cells in a MEK-dependent mechanism, which led to increased surface levels of MT1-MMP. This was accompanied by an increase in MT1-MMP-dependent degradation of DQ-collagen by lysates of GM-CSF stimulated endothelial cells. GM-CSF did not increase MT1-MMP levels in fibroblasts. The effect of GM-CSF on endothelial cell sprout formation could be mimicked by adenoviral transduction of intact spheroids with virus expressing MT1-MMP, but not by transduction of endothelial cells before spheroid formation, suggesting that upregulation of MT1-MMP must only occur in cells directly involved in tubule formation. © 2007 Wiley-Liss, Inc.
AB - In our study, we examined the mechanism by which granulocyte-macrophage colony stimulating factor (GM-CSF) regulates angiogenesis using in vitro models. GM-CSF significantly increased precapillary sprout-like formation from endothelial cell spheroids seeded in type-I collagen gels and tubule formation on coculture of endothelial cells with fibroblasts. In both cases, sprout and tubule formation was highly dependent on metalloproteinase activity. Tissue Inhibitor of metalloproteinase (TIMP) profiling in the spheroid and coculture models showed inhibition by TIMP-2 but not by TIMP-1, indicative of activity of membrane-type matrix metalloproteinases (MT-MMPs). GM-CSF induced sprout formation in spheroids was found to be potently inhibited by siRNA specific for MT1-MMP. Subsequent analysis showed that GM-CSF transiently increased MT1-MMP mRNA in endothelial cells in a MEK-dependent mechanism, which led to increased surface levels of MT1-MMP. This was accompanied by an increase in MT1-MMP-dependent degradation of DQ-collagen by lysates of GM-CSF stimulated endothelial cells. GM-CSF did not increase MT1-MMP levels in fibroblasts. The effect of GM-CSF on endothelial cell sprout formation could be mimicked by adenoviral transduction of intact spheroids with virus expressing MT1-MMP, but not by transduction of endothelial cells before spheroid formation, suggesting that upregulation of MT1-MMP must only occur in cells directly involved in tubule formation. © 2007 Wiley-Liss, Inc.
U2 - 10.1002/ijc.23234
DO - 10.1002/ijc.23234
M3 - Article
VL - 122
SP - 1261
EP - 1272
JO - International Journal of Cancer
JF - International Journal of Cancer
SN - 0020-7136
IS - 6
ER -