Helper NLR proteins NRC2a/b and NRC3 but not NRC1 are required for Pto-mediated cell death and resistance in Nicotiana benthamiana

Chih-Hang Wu, Khaoula Belhaj, Tolga O Bozkurt, Marlène S Birk, Sophien Kamoun

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


Plants defend against pathogens using both cell surface andintracellular immune receptors (Dodds & Rathjen, 2010; Winet al., 2012). Plant cell surface receptors include receptor-likekinases (RLKs) and receptor-like proteins (RLPs), which respondto pathogen-derived apoplastic molecules (Boller & Felix, 2009;Thomma et al., 2011). By contrast, plant intracellular immunereceptors are typically nucleotide-binding leucine-rich repeat (NB-LRR or NLR) proteins, which respond to translocated effectorsfrom a diversity of pathogens (Eitas & Dangl, 2010; Bonardi et al.,2012). These receptors engage in microbial perce ption either bydirectly binding pathogen molecules or ind irectly by sensingpathogen-induced perturbations (Win et al., 2012). However,signaling events downstream of pathogen recognition remainpoorly understood.In addition to their role in microbial recognition, some NLRproteins contribute to signal transduction and/or amplification(Gabriels et al., 2007; Bonardi et al., 2011; Cesari et al., 2014). Anemerging model is that NLR proteins often function in pairs, with‘helper’ proteins required for the activity of ‘sensors’ that mediatepathogen recognition (Bonardi et al., 2011, 2012). Amongpreviously reported NLR helpers, NRC1 (NB-LRR proteinrequired for hypersensitive-response (HR)-associated cell death 1)stands out for having been reported as a signaling hub required forthe cell death mediated by both cell surface immune receptors suchas Cf-4, Cf-9, Ve1 and LeEix2, as well as intracellular immunereceptors, namely Pto, Rx and Mi-1.2 (Gabriels et al., 2006,2007; Sueldo, 2014; Sueldo et al., 2015). However, these studiesdid not take into account the Nicotiana benthamiana genomesequence, and it remains questionable whether NRC1 is indeedrequired for the reported phenotypes.Functional analyses of NRC1 were performed using virus-induced gene silencing (VIGS) (Gabriels et al., 2007), a method thatis popular for genetic analyses in several plant systems, particularlythe model solanaceous plant N. benthamiana (Burch-Smith et al.,2004). However, interpretation of VIGS can be problematic as theexperiment can result in off-target silencing (Senthil-Kumar & Mysore, 2011). In addition, heterologous gene fragments from other species (e.g. tomato) have been frequently used to silence homologs in N. benthamiana, particularly in studies that predate the sequencing of the N. benthamiana genome (Burton et al., 2000; Liu et al., 2002b; Lee et al., 2003; Gabriels et al., 2006, 2007; SenthilKumaret al., 2007; Oh et al., 2010). In the NRC1 study, a fragment of a tomato gene corresponding to the LRR domain was used for silencing in N. benthamiana (Gabriels et al., 2007). Given that a draft genome sequence of N. benthamiana has been generated (Bombarely et al., 2012) and silencing prediction tools have become available (Fernandez-Pozo et al., 2015), we can now design better VIGS experiments and revisit previously published studies. Two questions arise about the NRC1 study. First, is there a NRC1 ortholog in N. benthamiana? Second, are the reported phenotypes caused by silencing of NRC1 in N. benthamiana? In this study, we investigated NRC1-like genes in solanaceous plants using a combination of genome annotation, phylogenetics, gene silencing and genetic complementation experiments. We discovered three paralogs of NRC1, which we termed NRC2a, NRC2b and NRC3, are required for hypersensitive cell death and resistance mediated by Pto, but are not essential for the cell death triggered by Rx and Mi-1.2. NRC2a/b and NRC3 weakly contribute to the hypersensitive cell death triggered by Cf-4. Our results highlight the importance of applying genetic complementation assays to validate gene function in RNA silencing experiments.
Original languageEnglish
Pages (from-to)1344-1352
Number of pages9
JournalNew Phytologist
Issue number4
Early online date23 Nov 2015
Publication statusPublished - Mar 2016


  • cell death
  • Nicotiana bethamiana
  • NRC1 (NB-LRR protein required for HR-associated cell death 1)
  • nucleotide-binding leucine-rich repeat protein
  • plant immunity
  • Pto

Cite this