Projects per year
Abstract
A decaheme cytochrome MtrC from Shewanella oneidensis MR-1 immobilized on an ITO electrode displays unprecedented H2O2 reduction activity. Although MtrC showed lower peroxidase activity in solution compared to horseradish peroxidase, the ten heme cofactors enable excellent electronic communication and a superior activity on the electrode surface. A hierarchical ITO electrode enabled optimal immobilization of MtrC and a high current density of 1 mA cm−2 at 0.4 V vs SHE could be obtained at pH 6.5 (Eonset = 0.72 V). UV−visible and Resonance Raman spectroelectrochemical studies suggest the formation of a high valent iron-oxo species as the catalytic intermediate. Our findings demonstrate the potential of heme-proteins to catalyze technologically relevant reactions and establish MtrC as a new benchmark in biotechnological H2O2 reduction with scope for applications in fuel cells and biosensors.
Original language | English |
---|---|
Pages (from-to) | 3324–3327 |
Number of pages | 4 |
Journal | Journal of the American Chemical Society |
Volume | 139 |
Issue number | 9 |
Early online date | 21 Feb 2017 |
DOIs | |
Publication status | Published - 8 Mar 2017 |
Projects
- 1 Finished
-
Advancing Biotechnologies for Fuel Generation: Exploiting Transmembrane Cytochromes for Solar Energy Conversion
Butt, J., Clarke, T., Richardson, D. & Lyall, V.
Biotechnology and Biological Sciences Research Council
30/06/13 → 29/06/16
Project: Research