High-performance solid-state flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@NiAl layered double hydroxide film electrode

Lei Li, Kwan San Hui, Kwun Nam Hui, Tengfei Zhang, Jianjian Fu, Young-Rae Cho

Research output: Contribution to journalArticle

40 Citations (Scopus)
10 Downloads (Pure)

Abstract

All-solid-state flexible supercapacitor (AFSC) is a promising energy storage device due to its high flexibility, security, and environmental friendliness. However, high electrical resistance and low specific capacitance of electrodes limit its application for potential portable electronic devices. In this study, we design a novel hybrid film electrode composed of reduced graphene oxide (rGO)/silver nanowire (Ag NW)@nickel aluminum layered double hydroxide (NiAl LDH; herein, GAL) possessing high electrochemical performance by using hydrothermal and vacuum filtration techniques. The Ag NW@NiAl LDH (AL) composites with hierarchical core-shell structure are utilized to increase electroactive surface area and improve electrical conductivity, while the rGO nanosheets serve as a prominent carbon material with outstanding electrical conductivity and mechanical flexibility. The freestanding GAL electrode shows high specific capacitance of 1148 F g−1 at 1 A g−1 compared with rGO/NiAl LDH (GL) of 765.2 F g−1 at 1 A g−1. Furthermore, the bind-free symmetric AFSC device is successfully prepared using GAL hybrid film as electrodes and PVA-KOH as solid-state gel electrolyte. The GAL//GAL AFSC device delivers a superior specific capacitance of 127.2 F g−1 at 1 A g−1, a high energy density of 35.75 mWh cm−3 at a power density of 1.01 W cm−3, and great cycling ability of 83.2% over 10,000 cycles at 5 A g−1. This study introduces a novel design of flexible electrode structure for advanced energy storage applications.

Original languageEnglish
Pages (from-to)338-349
Number of pages12
JournalChemical Engineering Journal
Volume348
Early online date25 Apr 2018
DOIs
Publication statusPublished - 15 Sep 2018

Keywords

  • All-solid-state supercapacitor
  • Hybrid film
  • Layered double hydroxide
  • Reduced graphene oxide
  • Silver nanowire

Cite this