Projects per year
Abstract
This contribution addresses two developing areas of sediment fingerprinting research. Specifically, how to improve the temporal resolution of source apportionment estimates whilst minimizing analytical costs and, secondly, how to consistently quantify all perceived uncertainties associated with the sediment mixing model procedure. This first matter is tackled by using direct X-ray fluorescence spectroscopy (XRFS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses of suspended particulate matter (SPM) covered filter papers in conjunction with automatic water samplers. This method enables SPM geochemistry to be quickly, accurately, inexpensively and non-destructively monitored at high-temporal resolution throughout the progression of numerous precipitation events. We then employed a Bayesian mixing model procedure to provide full characterization of spatial geochemical variability, instrument precision and residual error to yield a realistic and coherent assessment of the uncertainties associated with source apportionment estimates. Applying these methods to SPM data from the River Wensum catchment, UK, we have been able to apportion, with uncertainty, sediment contributions from eroding arable topsoils, damaged road verges and combined subsurface channel bank and agricultural field drain sources at 60- and 120-minute resolution for the duration of five precipitation events. The results presented here demonstrate how combining Bayesian mixing models with the direct spectroscopic analysis of SPM-covered filter papers can produce high-temporal resolution source apportionment estimates that can assist with the appropriate targeting of sediment pollution mitigation measures at a catchment level.
Original language | English |
---|---|
Pages (from-to) | 78-92 |
Number of pages | 15 |
Journal | Earth Surface Processes and Landforms |
Volume | 40 |
Issue number | 1 |
Early online date | 22 Jul 2014 |
DOIs | |
Publication status | Published - Jan 2015 |
Keywords
- fingerprinting
- Bayesian mixing model
- uncertainty
- X-ray fluorescence
- filter papers
Profiles
-
Richard Cooper
- School of Environmental Sciences - Lecturer in Environmental Sciences
- Water Security Research Centre - Member
- Geosciences - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
-
Kevin Hiscock
- School of Environmental Sciences - Professor of Environmental Sciences
- Water Security Research Centre - Member
- Geosciences - Member
- ClimateUEA - Member
Person: Member, Research Group Member, Research Centre Member, Academic, Teaching & Research
Projects
- 1 Finished
-
Design and Implication of a Monitoring Approach and Conceptual Model for the Wensum Demonstration Test Catchment (LINK R18715/R18678/R19904/R21541)
Hiscock, K., Boar, R., Dockerty, T., Lovett, A., Krueger, T. & Sunnenberg, G.
Department for Environment Food and Rural Affairs
1/12/09 → 31/03/14
Project: Research
Research output
- 68 Citations (Scopus)
- 1 Abstract
-
High-temporal Resolution Sediment Fingerprinting in the River Wensum Demonstration Test Catchment, UK: A Bayesian Approach
Cooper, R., Krueger, T., Hiscock, K. & Rawlins, B. G., Apr 2014.Research output: Contribution to conference › Abstract
Open AccessFile