TY - JOUR
T1 - High-throughput screening of nitrogen-coordinated bimetal catalysts for multielectron reduction of CO2 to CH4 with high selectivity and low limiting potential
AU - Wang, Shuo
AU - Li, Lei
AU - Li, Jing
AU - Yuan, Chengzong
AU - Kang, Yao
AU - Hui, Kwan San
AU - Zhang, Jintao
AU - Bin, Feng
AU - Fan, Xi
AU - Chen, Fuming
AU - Hui, Kwun Nam
N1 - Funding Information: This work was funded by the Science and Technology Development Fund, Macau SAR (File no. 0191/2017/A3, 0041/2019/A1, 0046/2019/AFJ, and 0021/2019/AIR), the University of Macau (File no. MYRG2017-00216-FST and MYRG2018-00192-IAPME), the UEA funding, the Science and Technology Program of Guangzhou (2019050001), and the National Key Research and Development Program of China (2019YFE0198000). F.C. acknowledges the Pearl River Talent Program (2019QN01L951). The DFT calculations were performed at the High Performance Computing Cluster (HPCC) of the Information and Communication Technology Office (ICTO) at the University of Macau.
PY - 2021/4/8
Y1 - 2021/4/8
N2 - Significant challenges remain for developing efficient catalysts in an electrochemical multielectron CO2 reduction reaction (CO2RR), which usually suffers from poor activity and selectivity. Motivated by the recent experimental progress in fabricating dual-metal atom catalysts (DMACs) in N-doped graphene materials (graphene-N6V4; N: nitrogen and V: vacancy), we sampled eight types of homonuclear (N6V4-M2, M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Ag) catalysts and 28 types of heteronuclear (N6V4-M1M2) catalysts to study CO2RR activity via first-principles high-throughput screening. Using stability, activity, and selectivity as indicators along with the broken conventional scaling relationship, N6V4-AgCr was selected as a promising candidate for deep CO2 reduction to methane with a low overpotential of 0.55 V after two screening rounds. Further analysis showed that a frustrated Lewis pair, formed between metal and the para-N, owing to the difference in the electronic arrangement of the d orbitals of various transition metals, caused a difference in the spin polarization of the systems and affected the catalytic performance of each DMAC. Our work not only provides a solid strategy for screening potential catalysts but also demonstrates that their CO2 reduction activities originate from the various atomic and electronic structures of DMACs.
AB - Significant challenges remain for developing efficient catalysts in an electrochemical multielectron CO2 reduction reaction (CO2RR), which usually suffers from poor activity and selectivity. Motivated by the recent experimental progress in fabricating dual-metal atom catalysts (DMACs) in N-doped graphene materials (graphene-N6V4; N: nitrogen and V: vacancy), we sampled eight types of homonuclear (N6V4-M2, M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Ag) catalysts and 28 types of heteronuclear (N6V4-M1M2) catalysts to study CO2RR activity via first-principles high-throughput screening. Using stability, activity, and selectivity as indicators along with the broken conventional scaling relationship, N6V4-AgCr was selected as a promising candidate for deep CO2 reduction to methane with a low overpotential of 0.55 V after two screening rounds. Further analysis showed that a frustrated Lewis pair, formed between metal and the para-N, owing to the difference in the electronic arrangement of the d orbitals of various transition metals, caused a difference in the spin polarization of the systems and affected the catalytic performance of each DMAC. Our work not only provides a solid strategy for screening potential catalysts but also demonstrates that their CO2 reduction activities originate from the various atomic and electronic structures of DMACs.
UR - http://www.scopus.com/inward/record.url?scp=85104928901&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.0c10802
DO - 10.1021/acs.jpcc.0c10802
M3 - Article
SN - 1932-7447
VL - 125
SP - 7155
EP - 7165
JO - The Journal of Physical Chemistry C
JF - The Journal of Physical Chemistry C
IS - 13
ER -