Himalayan Tectonic Belt: Morlet wavelet variation and seismic harmony

Research output: Contribution to journalArticle

Abstract

Morlet wavelet analysis is a method of studying the periodic spectrum of non-stationary physical signals and is applied to the Himalayan Tectonic Belt to explore whether there is any seismic periodicity, and to explore the possibility of harmony or commonality of properties among the seismic activities of different zones. The earthquake sequence during 1951–2016 with magnitudes M ≥ 6.0 is analysed. Wavelet non-periodicity for the Centre zone suggests a non-uniform spatial–temporal distribution of earthquake movement between plates which may relate with the rare great earthquakes, while the periodicities for the west and east zones may suggest the concurrence with the adjustment of the tectonic movement of the east- and west-end regions of the Himalayan Tectonic Belt relative to its central core. These three zones collectively form the Himalayan Tectonic Belt. This contains a periodicity of about five years of seismic activity that tests successfully with a 95% confidence statistic. Borrowing from the concept of musical harmony, this is the significant seismic harmonic which reflects the Belt’s pervasive tectonic stress and an overall harmony of continent–continent plate convergence. Morlet wavelet analysis also reveals the Himalayan Tectonic Belt and the Pamir–Hindu Kush Tectonic Zone to be engaged as a big new family: the Himalayan Tectonic Belt Plus. It is demonstrated that this new whole also has seismic harmony with the common property again being the 5-year periodicity. This indicates a unified structure of pervading active stress and seismic harmony permeating the overall seismicity.
Original languageEnglish
JournalPure and Applied Geophysics
Early online date1 Sep 2021
DOIs
Publication statusE-pub ahead of print - 1 Sep 2021

Cite this