TY - JOUR
T1 - HIVE-COTE 2.0: a new meta ensemble for time series classification
AU - Middlehurst, Matthew
AU - Large, James
AU - Flynn, Michael
AU - Lines, Jason
AU - Bostrom, Aaron
AU - Bagnall, Anthony
N1 - Funding Information: This work is supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through an iCASE award sponsored by British Telecom (T206188) and an equipment Grant (T024593). The experiments were carried out on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia and using a Titan X Pascal donated by the NVIDIA Corporation.
PY - 2021/12
Y1 - 2021/12
N2 - The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time series classification. HIVE-COTE forms its ensemble from classifiers of multiple domains, including phase-independent shapelets, bag-of-words based dictionaries and phase-dependent intervals. Since it was first proposed in 2016, the algorithm has remained state of the art for accuracy on the UCR time series classification archive. Over time it has been incrementally updated, culminating in its current state, HIVE-COTE 1.0. During this time a number of algorithms have been proposed which match the accuracy of HIVE-COTE. We propose comprehensive changes to the HIVE-COTE algorithm which significantly improve its accuracy and usability, presenting this upgrade as HIVE-COTE 2.0. We introduce two novel classifiers, the Temporal Dictionary Ensemble and Diverse Representation Canonical Interval Forest, which replace existing ensemble members. Additionally, we introduce the Arsenal, an ensemble of ROCKET classifiers as a new HIVE-COTE 2.0 constituent. We demonstrate that HIVE-COTE 2.0 is significantly more accurate on average than the current state of the art on 112 univariate UCR archive datasets and 26 multivariate UEA archive datasets.
AB - The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time series classification. HIVE-COTE forms its ensemble from classifiers of multiple domains, including phase-independent shapelets, bag-of-words based dictionaries and phase-dependent intervals. Since it was first proposed in 2016, the algorithm has remained state of the art for accuracy on the UCR time series classification archive. Over time it has been incrementally updated, culminating in its current state, HIVE-COTE 1.0. During this time a number of algorithms have been proposed which match the accuracy of HIVE-COTE. We propose comprehensive changes to the HIVE-COTE algorithm which significantly improve its accuracy and usability, presenting this upgrade as HIVE-COTE 2.0. We introduce two novel classifiers, the Temporal Dictionary Ensemble and Diverse Representation Canonical Interval Forest, which replace existing ensemble members. Additionally, we introduce the Arsenal, an ensemble of ROCKET classifiers as a new HIVE-COTE 2.0 constituent. We demonstrate that HIVE-COTE 2.0 is significantly more accurate on average than the current state of the art on 112 univariate UCR archive datasets and 26 multivariate UEA archive datasets.
KW - HIVE-COTE
KW - Heterogeneous ensembles
KW - Multivariate time series
KW - Time series classification
UR - http://www.scopus.com/inward/record.url?scp=85115613702&partnerID=8YFLogxK
U2 - 10.1007/s10994-021-06057-9
DO - 10.1007/s10994-021-06057-9
M3 - Article
VL - 110
SP - 3211
EP - 3243
JO - Machine Learning
JF - Machine Learning
SN - 0885-6125
ER -