Abstract
Continuous-time recurrent neural networks (CTRNNs) are potentially an excellent substrate for the generation of adaptive behaviour in artificial autonomous agents. However, node saturation effects in these networks can leave them insensitive to input and stop signals from propagating. Node saturation is related to the problems of hyper-excitation and quiescence in biological nervous systems, which are thought to be avoided through the existence of homeostatic plastic mechanisms. Analogous mechanisms are here implemented in a variety of CTRNN architectures and are shown to increase node sensitivity and improve signal propagation, with implications for robotics. These results lend support to the view that homeostatic plasticity may prevent quiescence and hyper-excitation in biological nervous systems.
Original language | English |
---|---|
Pages | 252-259 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 2005 |
Event | 6th International Workshop on Information Processing in Cells and Tissues - York, United Kingdom Duration: 1 Jan 2005 → … |
Conference
Conference | 6th International Workshop on Information Processing in Cells and Tissues |
---|---|
Country/Territory | United Kingdom |
City | York |
Period | 1/01/05 → … |