TY - JOUR
T1 - Human-induced trophic cascades along the fecal detritus pathway
AU - Nichols, Elizabeth
AU - Uriarte, Marãa
AU - Peres, Carlos A.
AU - Louzada, Julio
AU - Braga, Rodrigo Fagundes
AU - Schiffler, Gustavo
AU - Endo, Whaldener
AU - Spector, Sacha H.
N1 - © 2013 Nichols et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2013/10/16
Y1 - 2013/10/16
N2 - Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function.
AB - Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function.
U2 - 10.1371/journal.pone.0075819
DO - 10.1371/journal.pone.0075819
M3 - Article
VL - 8
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 10
M1 - e75819
ER -