Abstract
The paper deals with the plane problem of the hydroelastic behaviour of floating plates under the influence of periodic surface water waves. Analysis of this problem is based on hydroelasticity, in which the coupled hydrodynamics and structural dynamics problems are solved simultaneously. The plate is modeled by an Euler beam. The method of numerical solution of the floating-beam problem is based on expansions of the hydrodynamic pressure and the beam deflection with respect to different basic functions. This makes it possible to simplify the treatment of the hydrodynamic part of the problem and at the same time to satisfy accurately the beam boundary conditions. Two approaches aimed to reduce the beam vibrations are described. In the first approach, an auxiliary floating plate is added to the main structure. The size of the auxiliary plate and its elastic characteristics can be chosen in such a way that deflections of the main structure for a given frequency of incident wave are reduced. Within the second approach the floating beam is connected to the sea bottom with a spring, the rigidity of which can be selected in such a way that deflections in the main part of the floating beam are very small. The effect of the vibration reduction is quite pronounced and can be utilized at the design stage.
Original language | English |
---|---|
Pages (from-to) | 21-40 |
Number of pages | 20 |
Journal | Journal of Engineering Mathematics |
Volume | 44 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2002 |