Hydrogen-terminated mesoporous silicon monoliths with huge surface area as alternative Si-based visible light-active photocatalysts

Ting Li, Jun Li, Qiang Zhang, Emma Blazeby, Congxiao Shang, Hualong Xu, Xixiang Zhang, Yimin Chao

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
8 Downloads (Pure)


Silicon-based nanostructures and their related composites have drawn tremendous research interests in solar energy storage and conversion. Mesoporous silicon with huge surface area of 400 - 900 m2g-1 developed by electrochemical etching exhibits excellent photocatalytic ability and stablility after 10 cycles in degrading methyl orange under visible light irradiation, owing to the unique mesoporous network, abundant surface hydrides and efficient light harvesting. This work showcases the profound effects of surface area, crystallinity, pore topology on charge igration/recombination and mass transportation. Therein the ordered 1D channel array has outperformed the interconnected 3D porous network by greatly accelerating the mass diffusion and enhancing the accessibility of the active sites on the extensive surfaces.
Original languageEnglish
Pages (from-to)71092-71099
Number of pages8
JournalRSC Advances
Early online date21 Jul 2016
Publication statusPublished - 21 Jul 2016

Cite this