Projects per year
Abstract
Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL.
Original language | English |
---|---|
Pages (from-to) | 9930-9938 |
Number of pages | 9 |
Journal | Oncotarget |
Volume | 5 |
Issue number | 20 |
Publication status | Published - 30 Oct 2014 |
Profiles
-
Kristian Bowles
- Norwich Medical School - Dean of Norwich Medical School
- Cancer Studies - Member
Person: Research Group Member, Academic, Teaching & Research
-
Stuart Rushworth
- Norwich Medical School - Professor
- Metabolic Health - Director
- Cancer Studies - Member
Person: Research Group Member, Academic, Teaching & Research
Projects
- 1 Finished
-
The role of Nrf2 in protecting AML cells from chemotherapy-induced apotosis
Association for International Cancer Research
1/04/12 → 31/03/15
Project: Research