Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster

Preetha Shibu, Frazer McCuaig, Anne L. McCartney, Magdalena Kujawska, Lindsay J. Hall, Lesley Hoyles

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
13 Downloads (Pure)

Abstract

As part of the ongoing studies with clinically relevant Klebsiella spp., we characterized the genomes of three clinical GES-5-positive ST138 strains originally identified as Klebsiella oxytoca. bla OXY gene, average nucleotide identity and phylogenetic analyses showed the strains to be Klebsiella michiganensis . Affiliation of the strains to ST138 led us to demonstrate that the current multi-locus sequence typing scheme for K. oxytoca can be used to distinguish members of this genetically diverse complex of bacteria. The strains encoded the kleboxymycin biosynthetic gene cluster (BGC), previously only found in K. oxytoca strains and one strain of Klebsiella grimontii . The finding of this BGC, associated with antibiotic-associated haemorrhagic colitis, in K. michiganensis led us to carry out a wide-ranging study to determine the prevalence of this BGC in Klebsiella spp. Of 7170 publicly available Klebsiella genome sequences screened, 88 encoded the kleboxymycin BGC. All BGC-positive strains belonged to the K. oxytoca complex, with strains of four ( K. oxytoca , K. pasteurii , K. grimontii , K. michiganensis ) of the six species of complex found to encode the complete BGC. In addition to being found in K. grimontii strains isolated from preterm infants, the BGC was found in K. oxytoca and K. michiganensis metagenome-assembled genomes recovered from neonates. Detection of the kleboxymycin BGC across the K. oxytoca complex may be of clinical relevance and this cluster should be included in databases characterizing virulence factors, in addition to those characterizing BGCs.
Original languageEnglish
Article number000592
JournalMicrobial Genomics
Volume7
Issue number6
DOIs
Publication statusPublished - 18 Jun 2021

Cite this