Improving wheat as a source of iron and zinc for global nutrition

J. Balk, J. M. Connorton, Y. Wan, A. Lovegrove, K. L. Moore, C. Uauy, P. A. Sharp, P. R. Shewry

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)
17 Downloads (Pure)


Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and the presence of phytates in mineral-rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a ‘sink’ for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.

Original languageEnglish
Pages (from-to)53-59
Number of pages7
JournalNutrition Bulletin
Issue number1
Early online date14 Jan 2019
Publication statusPublished - Mar 2019


  • bioavailability
  • biofortification
  • iron
  • phytic acid
  • wheat
  • zinc

Cite this