TY - JOUR
T1 - Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition
AU - Gonzalez, Beatriz
AU - Banos-Sanz, Jose Ignacio
AU - Villate, Maider
AU - Brearley, Charles Alistair
AU - Sanz-Aparicio, Julia
PY - 2010/5/25
Y1 - 2010/5/25
N2 - Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular Graphic (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates.
AB - Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular Graphic (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates.
U2 - 10.1073/pnas.0912979107
DO - 10.1073/pnas.0912979107
M3 - Article
VL - 107
SP - 9608
EP - 9613
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 21
ER -