Instability-driven evolution of poloidal magnetic fields in relativistic stars

Riccardo Ciolfi, Samuel K. Lander, Gian Mario Manca, Luciano Rezzolla

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

The problem of the stability of magnetic fields in stars has a long history and has been investigated in detail in perturbation theory. Here, we consider the nonlinear evolution of a nonrotating neutron star with a purely poloidal magnetic field, in general relativity. We find that an instability develops in the region of the closed magnetic field lines and over an Alfvén timescale, as predicted by perturbation theory. After the initial unstable growth, our evolutions show that a toroidal magnetic field component is generated, which increases until it is locally comparable in strength with the poloidal one. On longer timescales the system relaxes to a new non-axisymmetric configuration with a reorganization of the stellar structure and large-amplitude oscillations, mostly in the fundamental mode. We discuss the energies involved in the instability and the impact they may have on the phenomenology of magnetar flares and on their detectability through gravitational-wave emission.

Original languageEnglish
Article numberL6
JournalAstrophysical Journal Letters
Volume736
Issue number1
DOIs
Publication statusPublished - 24 Jun 2011

Keywords

  • gravitational waves
  • magnetohydrodynamics (MHD)
  • methods: numerical
  • stars: neutron

Cite this