Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries

Xueqing Yu, Yao Kang, Shuo Wang, Kwun San Hui, Kwun Nam Hui, Huajun Zhao, Jianding Li, Bo Li, Jincheng Xu, Liang Chen, Huaiyu Shao

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
5 Downloads (Pure)


Hybrid sodium-air batteries (HSABs) are emerging systems for next-generation energy storage owing to their high theoretical energy density, high specific capacity, low cost, and environmental friendliness. However, the ungratified energy efficiency, large overpotential, and poor cycling stability associated with the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) at air electrodes hamper their further development. Herein, we report a facile electrodeposition method to construct three-dimensional nickel defect-rich nickel-iron layered double hydroxide nanosheets decorated with platinum-nickel alloyed nanoparticles grown on macroporous nickel foam substrates (PtNi/NixFe LDHs) as a binder-free electrocatalyst. The optimal catalyst (Pt3Ni1/NixFe LDHs) demonstrates a low overpotential (265 mV at the current density of 10 mA cm-2), a small Tafel slope (22.2 mV dec-1) towards the OER and a high half-wave potential (0.852 V) for ORR, as well as superior long-term stability in comparison to commercial catalysts. Theoretical calculations revealed that the Ni-top site of Pt3Ni1/NixFe LDHs works as an active site for enhanced OER/ORR activities. The fabricated HSAB with Pt3Ni1/NixFe LDHs as the air cathode displayed not only an initial low overpotential gap (0.50 V) but also superior rechargeability and structure stability with high round-trip efficiency (∼79.9%) of over 300 cycles. These results provide a novel design of bifunctional and binder-free catalyst as the cathode for metal-air batteries. This journal is

Original languageEnglish
Pages (from-to)16355-16365
Number of pages11
JournalJournal of Materials Chemistry A
Issue number32
Early online date11 Jul 2020
Publication statusPublished - 28 Aug 2020

Cite this