Projects per year
Abstract
Paneth cells are key epithelial cells providing an antimicrobial barrier and maintaining integrity of the small intestinal stem cell niche. Paneth cell abnormalities are unfortunately detrimental to gut health and often associated with digestive pathologies such as Crohn's disease or infections. Similar alterations are observed in individuals with impaired autophagy, a process which recycles cellular components. The direct effect of autophagy-impairment on Paneth cells has not been analysed. To investigate this, we generated a mouse model lacking Atg16l1 specifically in intestinal epithelial cells making these cells impaired in autophagy. Using 3D intestinal organoids enriched for Paneth cells, we compared the proteomic profiles of wild-type (WT) and autophagy-impaired organoids. We used an integrated computational approach combining protein-protein interaction networks, autophagy targeted proteins and functional information to identify the mechanistic link between autophagy-impairment and disrupted pathways. Of the 284 altered proteins, 198 (70%) were more abundant in autophagy-impaired organoids, suggesting reduced protein degradation. Interestingly, these differentially abundant proteins comprised 116 proteins (41%), predicted targets of the selective autophagy proteins p62, LC3 and ATG16L1. Our integrative analysis revealed autophagy-mediated mechanisms degrading proteins key to Paneth cell functions, such as exocytosis, apoptosis and DNA damage repair. Transcriptomic profiling of additional organoids confirmed that 90% of the observed changes upon autophagy alteration affect protein level and not gene expression. We performed further validation experiments showing differential lysozyme secretion, confirming our computationally inferred down-regulation of exocytosis. Our observations could explain how protein level alterations affect Paneth cell homeostatic functions upon autophagy impairment.
Original language | English |
---|---|
Article number | dmm037069 |
Journal | Disease Models & Mechanisms |
Volume | 12 |
Issue number | 3 |
Early online date | 27 Feb 2019 |
DOIs | |
Publication status | Published - 18 Mar 2019 |
Profiles
-
Simon Carding
- Norwich Medical School - Research Leader
- Norwich Institute for Healthy Aging - Member
- Gastroenterology and Gut Biology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
-
Ulrike Mayer
- School of Biological Sciences - Professor of Biology
Person: Academic, Teaching & Research
-
Penny Powell
- Norwich Medical School - Associate Professor
- Metabolic Health - Member
- Gastroenterology and Gut Biology - Member
Person: Research Group Member, Research Centre Member, Academic, Teaching & Research
Projects
- 1 Finished
-
The effects of dihydrotestosterone on amino acid transport in ageing mammalian skeletal muscle fibres
Powell, P. & Mutungi, G.
Biotechnology and Biological Sciences Research Council
15/03/13 → 14/07/16
Project: Research