Abstract
Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches.
Original language | English |
---|---|
Pages (from-to) | 813-823 |
Journal | Metallomics |
Volume | 9 |
Issue number | 7 |
Early online date | 28 Jun 2017 |
DOIs | |
Publication status | Published - 1 Jul 2017 |
Profiles
-
Janneke Balk
- School of Biological Sciences - Group Leader
- Molecular Microbiology - Member
- Plant Sciences - Member
Person: Research Group Member, Academic, Teaching & Research