Abstract
Nickel cobalt phosphide (NiCoP) is emerging as a potential electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, its ORR/OER activities are sluggish. Here, we investigated the roles of iron dopants in the Fe-doped NiCoP (Fe–NiCoP) in order to boost its ORR/OER kinetics. The density functional theory (DFT) calculations reveal that the Fe dopant effectively modulates the electron conductivity of NiCoP and reduces binding energies of the reaction intermediates towards rate-determining steps of ORR and OER. A binder-free 3D microflowers morphology of the Fe–NiCoP embedded in the amorphous carbon layer (Fe–NiCoP@C) catalyst on the nickel foam was prepared as the air cathode for the hybrid sodium-air battery (HSAB). The HSAB displays a discharge voltage of 2.74 V at 0.01 mA cm−2 with excellent round trip efficiency of 93.26 % at the 500th cycle and state-of-the-art power density of 621 mW g−1.
Original language | English |
---|---|
Article number | 119786 |
Journal | Applied Catalysis B: Environmental |
Volume | 285 |
Early online date | 10 Dec 2020 |
DOIs | |
Publication status | Published - 15 May 2021 |
Keywords
- DFT calculation
- Electronic structure reformation
- Hybrid sodium-air battery
- Iron doping
- Nickel cobalt phosphide