Abstract
We statistically study vortex reconnections in quantum fluids by evolving different realizations of vortex Hopf links using the Gross-Pitaevskii model. Despite the time reversibility of the model, we report clear evidence that the dynamics of the reconnection process is time irreversible, as reconnecting vortices tend to separate faster than they approach. Thanks to a matching theory devised concurrently by Proment and Krstulovic [Phys. Rev. Fluids 5, 104701 (2020)PLFHBR2469-990X10.1103/PhysRevFluids.5.104701], we quantitatively relate the origin of this asymmetry to the generation of a sound pulse after the reconnection event. Our results have the prospect of being tested in several quantum fluid experiments and, theoretically, may shed new light on the energy transfer mechanisms in both classical and quantum turbulent fluids.
Original language | English |
---|---|
Article number | 164501 |
Journal | Physical Review Letters |
Volume | 125 |
DOIs | |
Publication status | Published - 15 Oct 2020 |
Keywords
- cond-mat.other
- nlin.CD
- physics.flu-dyn
Profiles
-
Davide Proment
- School of Engineering, Mathematics and Physics - Associate Professor in Applied Mathematics
- Centre for Photonics and Quantum Science - Member
- Quantum Fluids - Member
Person: Research Group Member, Academic, Teaching & Research