Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment

Bruce Lankford, Catherine Pringle, Jon McCosh, Mlungisi Shabalala, Tim Hess, Jerry W. Knox

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
13 Downloads (Pure)

Abstract

We examined the effects of hydrological variables such as irrigation area, irrigation efficiency and water storage on the resilience of (mostly commercial) irrigated agriculture to drought in a semi-arid catchment in South Africa. We formulated a conceptual framework termed ‘Water, Efficiency, Resilience, Drought’ (WERD) and an accompanying spreadsheet model. These allow the resilience of irrigated agriculture to drought to be analysed via water accounts and a key resilience indicator termed Days to Day Zero (DDZ). This represents the number of days that a pre- and within-drought supply of catchment water available to irrigation is withdrawn down to zero in the face of a prolonged drought. A higher DDZ (e.g. >300 days) indicates greater resilience whilst a lower DDZ (e.g. <150 days) signals lower resilience. Drought resilience arises through land and water management decisions underpinned by four types of resilience capacities; absorptive, adaptive, anticipative and transformative. For the case study, analyses showed that irrigators, with currently approximately 23,000 ha under irrigation, have historically absorbed and adapted to drought events through construction of water storage and adoption of more efficient irrigation practices resulting in a DDZ of 260 days. However, by not fully anticipating future climate and water-related risks, irrigators are arguably on a maladaptive pathway resulting in water supply gains, efficiency and other practices being used to increase irrigation command areas to 28,000 ha or more, decreasing their capacity to absorb future droughts. This areal growth increases water withdrawals and consumption, further stresses the catchment and reduces future DDZs to approximately 130 days indicating much lower drought resilience. Our approach, supported by supplementary material, allows stakeholders to better understand the resilience consequences of future drought in order to; reconcile competition between rising water demands, consider new water storage; improve agricultural and irrigation planning; and enhance catchment governance.
Original languageEnglish
Article number160263
JournalScience of the Total Environment
Volume859
Issue numberPart 2
Early online date17 Nov 2022
DOIs
Publication statusPublished - 10 Feb 2023

Keywords

  • Adaptation
  • Fruit production
  • River basin
  • South Africa
  • Water accounting

Cite this